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In this paper, a three dimensional numerical modeling of an optically controlled nanoscale FINFET considering quantum
mechanical effects has been theoretically examined and analyzed. The device characteristics are obtained from the self-
consistent solution of 3D Poisson-Schrodinger equation using WKB (Wentzel Kramers Brilloin) interpolation-Wavelet
method. This method provides more accurate results by dynamically adjusting the computational mesh and scales the CPU
time linearly with the number of mesh points using oscillating interpolation derived from WKB asymptotics, hence reducing
the numerical cost. The results obtained for dark and illuminated conditions are used to examine the performance of the

device for its suitable use as a photodetector.
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1. Introduction

The photosensitivity and the integrated circuit
compatibility of Field-Effect Transistors (FETs) have
extended potential of these devices for their use as
photodetectors. Among the FETs configuration, Metal
Semiconductor Field Effect Transistor (MESFET) and
High Electron Mobility Transistor (HEMT) have been
studied theoretically as well as experimentally by several
workers for various optically-controlled applications [1-5].
A three dimensional modeling of a nano MISFET
photodetector without including quantum mechanical
effects [6] has been reported. A transition from bulk to
multiple-gate fully depleted (FD) silicon-on-insulator
(SOI) offers drive current and better short-channel
immunity [7]. CMOS designs below 0.lpm are severely
constrained by SCE and gate insulator tunneling [8-
11].0ne of the approaches to circumvent the gate
tunneling restriction is to change the device structure so
that the MOSFET gate length can be further scaled even
with thicker oxide. Double-gate MOSFET (DGFET) is one
of the most promising devices for channel length in the
range 10-30 nm [12-15]. The alignment of the top and
bottom gates to each other and to source/drain (S/D)
doping is crucial to device performance, because
misalignment may cause extra gate-to-S/D overlap
capacitance as well as S/D series resistance [16].In order
to optimize the performance of double gate devices, self-
aligned processes and structures are proposed, with
FinFET being one of the most promising [17-21]. The
FinFET is a symmetric three-gate structure, which means

that all its three gates have the same work function and
also at the same potential. This three dimensional (3-D)
structure requires 3-D analysis. The potential variation in
the channel used to calculate the subthreshold current and
threshold voltage of FinFETs with doped and undoped
channels has been reported [22]. Two dimensional (2-D)
models can only be used to study the operation of the
device along certain plane sections of the channel. An
analytical model based on 3-D analysis for an undoped
channel has been reported [23].El Hamid et al., [24]
presented the 3-D analytical modeling including mobile
charge term. W. Yang et al., [25] reported the scaling
theory of FinFET by 3-D analytical solution of Poisson’s
equation in channel region. The existing literatures
reported on analytical modeling have shown the
complexity in evaluating various device characteristics
including QM effects. In addition, it has been found that
many assumptions and approximations have to be
incorporated while the device is analytically modeled.
Quantum mechanical modeling is important for many
reasons, e.g., the tunneling current through ultra-thin gate
oxide adds to the low limit of the off-state current [26].In
FinFET devices, quantum effects and non-equilibrium,
ballistic or near-ballistic transport has large impact on
device performance [26]. For channel length comparable
to the carrier scattering length, carriers transport
ballistically. The inversion layer thickness cannot be
treated same along the channel [26]. An analytical charge
model based on self-consistent solution of Poisson’s and
Schrodinger equation for 3-D FinFETs is carried out [27].
A ballistic quantum-mechanical simulation using CBR
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(Contact Block Reduction) method to investigate the
behavior of 10nm FinFET device is reported [28].Double-
gate FinFET devices with symmetric and asymmetric
poly-silicon gates have been fabricated [29]. FinFET is
developed with special emphasis on process simplicity and
compatibility with conventional CMOS technology [30].A
simple capacitive model was proposed by [31] to predict
the relationship between DIBL and S swing. N. Ben
Abdallah proposed the modeling of ballistic quantum
transport in nanostructures using the decomposition of the
wave function with reduced simulation time [32].A
numerical scheme for the 1-D Schrédinger equation used
to simulate a resonant tunneling diode uses the oscillating
interpolating function from WKB asymptotic [33]. A 3-D
quantum simulation of silicon nanowire transistors with
the effective mass approximation using mode space
approach producing high computational efficiency is
proposed [34]. In this paper, a 3D numerical model for n-
channel nanoscale FInFET photodetector including QME
has been developed and presented. The prime focus is to
obtain the device characteristics, considering QM effects
by numerically solving the 3D Poisson- Schrodinger
equations using Wavelet and WKB approximation until
self-consistency is achieved. The WKB approximation is a
more efficient method for approximation of the device
parameters. When solving the Poisson-Schrodinger
equations with standard finite element or finite difference
methods require a large number of grid points thus
increasing unnecessarily the numerical cost. The basic idea
of this method is that rather than using polynomial
interpolation functions, oscillating interpolation functions
provided by WKB approximation are used. This reduces
the numerical cost of the simulation and produces more
accurate results with much coarser grids. This method
provides a very good performance in terms of CPU time
savings and fast convergence, since at each step; the
evaluation of grid refinement does not require
computations introducing significant overhead.

2. Physics based modeling

The general FinFETs structure is shown in Fig.1. The
following are the geometrical parameters.

a%U (x, y’z)+ U (x,y, Z)+ U (x,y,2)

QN (.Y, 2) + (%Y. 2) = POGY. D))

i) Gate Length (L,): The physical gate length of FinFETs,
defined by spacer gap.
i) Fin Height (Hg,): The height of silicon fin, defined
by the distance between the
top gate and buried oxide layer (BOX).
iii) Fin Width (Tg,): The thickness of silicon fin,
defined between the front and back
gates.
iv) Top gate thickness (Toy;): The thickness of the top
gate oxide.
v) Front or back gate thickness (Ty): The thickness
of the front or back gate oxide.
vi) Channel Length (L.y): The channel length is
estimated by the metallurgical junction
for abrupt junctions.
Geometrical channel width defined as W=2x Hg, +
Tfm.

Bacl: gate

Seource

EBuried oxide

Frent gate

X

Fig. 1. Schematic diagram of FinFET.

Obviously, when Ty, is much larger than Hg, or when
top gate oxide is much thinner than the front and back
oxides, FinFET can be treated as single-gate fully depleted
SOI MOSFET (FDFET) as long as the silicon fin remains
fully depleted [23]. When Hg, is much larger than Tg, or
top gate oxide (To) is much thicker than the front and
back oxides (Tox), FInFET can be treated as DGFET
[23].1t is difficult to assume a simple potential distribution
because of its asymmetric 3-D structure. The electrostatic
potential in the subthreshold region can be described by
the 3-D Poisson’s equation.

0 (1)

ox’? oy’ 01* -

where U (X, Y, Z) is the surface potential at a particular

point (X, Y, Z),
doping concentration, q is the electronic charge, & is the
permittivity of silicon n(X,y,z) is the -electron

concentration, P(X,Y,Z)is the hole concentration, An is the

N,(%,y,z) is the uniform channel

excess carriers generated per unit volume.

Es

n(x,y,z)=2§1nij|x//(x,y,z)|2 )

i=1 i=1
where | is the valley and | is the subband.

n;MyKgT E. —E.
ny = ——2°—In|1+exp| ——" 3)
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Based on the Fermi-Dirac statistics, the electron

concentration can be expressed as

2 > 1 - E —
n(x,y,z) 227,/2m keT FI/Z(FKTJW(X v, z)\

j=1 =1 7
“)

where ¥ (X,Y,Z)is the wave function and F, is the

Fermi-Dirac integrals of order k. These integrals are

defined as
1 7 u®du
F = ,k>-1
(1) r(k+1)£1-+e“"
and also have the following property

d
—F =
dn « (77)

Fk—l(n)’ k <-1

The six boundary conditions are set by the top gate,
front gate, back gate, source, and drain and buried oxide
(Fig.1). The buried oxide is assumed to be thick enough
that any finite potential across the buried oxide leads to a
negligible electric field. The boundaries between gate
oxide and silicon fin are eliminated by replacing the
physical dimensions with effective dimensions. The whole
region is treated as homogenous silicon with effective
thickness (Te), effective channel length (L.y) and
effective height (He) [25]. Because, in the short channel
device, the lateral electric field becomes comparable to the
normal electric field, the geometrical average method
should be adopted [23] to reduce errors. These two
effective parameters are defined by [25]

4g .

Teff = \/Tfin ><(Tfin + gSI osz (5)
gox
2& ..

Heff :\/HfinX[Hfin_l_ gSI oxlj (6)
gox

where ¢

is silicon-oxide permittivity. With all the

0ox
assumptions and approximations above, the boundary
conditions are simplified as [25]

Top Gate:
Ulyon =Yy =V 9
Front Gate:
u 2=—Tu /2 g _VfbA ®
Back Gate:
2=Test /5 :Vg _Vfb- (9)

Source:
U ‘ x=0 — Vbi +V0p (10)

Drain:

U

X=Legt :Vbi +Vds +V0p (11)
Bottom gate:

u\ =V, -V, (12)

y=—Hex 9

Due to the symmetrical structure in the z direction, the
buried oxide boundary condition at the bottom U [0 =0
oz "’
is replaced with the bottom gate boundary condition.
where V,, is the photo induced voltage.
The excess carriers generated per unit volume due to
the absorption of incident optical power density are given

by [6]

an= 16, (e oy (13)

o '—;EE

b
W,
where W, is the maximum width of the depletion layer

and is given by

=[4e,In(N,/n)/qBN, "2 (14)

where N, is the acceptor concentration.(;Op (x)is the

excess carrier generation rate at any point X in the
semiconductor and is given by

G (X) = F;;‘ (1-R,NI-R)I-R, )ae 15

where P opt is the incident optical power density, h is the

Planck’s constant, y is the operating frequency,« is the

absorption coefficient of the semiconductor at the
operating wavelength, R,,,R;andRare the reflection
coefficient at the metal gate entrance, gate-insulator
interface and the insulator-semiconductor interface
respectively.

The mean lifetime of the minority carriers in the

illuminated condition, 7, can be written as
7, =(n,/n, + An)z (16)

where 7 is the lifetime of the carriers for the intrinsic
semiconductor. The characteristics of the device in the
absence of illumination can be obtained in a similar way
by substituting P,,=0 in equation (15).

The photo response drain current is given by
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Iph = IDL - ID(DARK ) (17)
The photocurrent gain is given by
M=1,/1 (18)

where [ is the primary current and is given by
I =a(Py, /hy)A (19)

The responsivity of the device, R is defined as the
output current divided by the incident light power

R=1, /P, (20)

h’ 62+h2 62+h2 0’

2m; ox*  2m; oy’
In the above equation m,, my*, m,” are effective
masses in the x, y and z directions. E is the eigen energy, h
is the reduced Planck’s constant, q is the charge of an
electron U(X, y, z) is the surface potential, y(x, y, z) is the
eigen wave function.
By using the variable separation method and
applying the WKB approximation for i in the x-

direction, the value for i (X, Y, Z) is equated to

y (X, y,2) = X (xX)p(y,2) =

2m; oz°

where |ph is the output current of the photodetector in

response to light and F’Opt is the optical power incident on

the photodetector.
External quantum efficiency is defined as the number
of carriers collected by the number of incident photons.

n:(lph/q)/(Popt/h}/) (21)

where I, is the photodetector current generated in
response to incident light, q is the electron charge, Py is
the incident optical power in watts, the quantity hy is the
energy per photon in joules, where h is Planck’s constant
and vy is frequency.

Model for quantum mechanical ballistic transport

The 3D effective mass Schrodinger equation along the
n-channel is given by [26]

— 22
+ qU (X,y,2) l//x,y,z - El//x,y,z ( )

3-D Schrédinger equation reduces to two dimensional
Schrodinger equation [26] as follows

n’ 07 i - h? W ox
e v o]s e (o (v 2)

(24)

The equation (24) can be written as

ko, X %2 V2 2 K82 » )
e " (kI O W T ayixy.2) " e(y.2) = Ee*a(y.2)

23) 2m, 2mg oy* 2m,
(25)
By using the above equation, a plane wave solution in
the x-direction is assumed. The The above equation (25) can be reduced as follows
hZ 62 hZ 82 h2k2
55 AU Y. 2) @AY, ) =| E-—— (Y. 2) (26)
2m, oy° 2m, oz 2m,
The following notations are used to indicate the x- s A2 2 A2
depend - . AU, (. (y.2)
ependence. v, (Y,2)=¢(Y,2), om; oy 2m; oz’ Yy YD (Y,
U,(y,2)=U(xY,2) .
and =E{ v, (Y, 2) (28)
E,,=E-nh’k}/2m.. hlk?
t,x X X E,, = E - = E,(X) (29)
' 2m,
h 2 k 2
E - om = E (27) The above equation (29) can be written in the form
X

The 2-D Schrédinger equation (27) is written as

HX (x) = EX (X)
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where H is the Hamiltonian operator and E is the

energy-eigen value
For Quantum model, the above equation takes the
form

H X (x) = E X (X) (30)
Let
H=T+U (31)

f =KE =lmv2 is the kinetic energy of electron and

A
P = mv is the potential energy of electron.

A
T can be written as

T =Lz = L (mvy? (32)
2 2m
A A 2
T-_Lp (33)
2m
where FA’ is the momentum operator and |S - in 6_

0 X
Equation (33) modifies into

2

—h’ 9 andU =U(x) (4
2m. ox?

X

Now the value of |—|A modifies into

~—h? o7

(33)
H=" ooz tUx)

Multiplying on both side of equation (35) with y/(X) and
substituting in equation (30) we get

[_hjaZ+U (X)}//(X) —Ep(o GO
2m, Ox

The equation (36) is the one dimensional Schrodinger’s
equation and can be written as

HX (x) = t::zaxaﬁ Et(x)}X(x) —EX(x) (7

*
X

where X (X) = w (X) and E,.(x)=U(x)

In the above equations, m, my*, m,” are the effective
masses. ¥ ,(Y,Z)is the eigen-wave function and
E t' x is the eigen-energy along a direction. The superscript

I is the index of sidebands. The 2-D Schrédinger equation
is solved for every point along the channel. The electron

effective mass is different in Si and SiO, region. To find
the values of my*, m,” we assume that the channel is
along [100] direction and there are three set of energy
valleys in the ky - k, plane with different combinations of
my*, m, and each set has two valleys. For this particular
case, the two sets of valleys are collapsed into one with
four valleys. Hence there are two sets of different
combinations of my*, m, [26]. Fig.2 shows the constant
energy valleys in k-space for silicon, showing six
conduction band valleys in [100] direction. The long axis
of the ellipsoid corresponds to longitudinal effective mass
of electrons and the short axis corresponds to transverse
effective mass. For [100] silicon, we have taken two

longitudinal valleys withm* = mtand four transverse
valleys withmx —  /m m . The above equation (37) is

solved using open boundary conditions.

.
) °
o~

my'=m|*(0 158m,)
mg =my (0. 19m.) m, | my | my |1y

my:=m1:[0 98me)
mg =y (0. 19me)

my =ty (0. 19m,)
10, "=1" (0. 98 ra.)

Fig. 2. Equi-energy valleys in k-space for silicon

3. Multiresolution analysis and wavelets

For semiconductor device simulation using partial
differential equations, the grid generation is very
important. Grid points must be present accurately
approximate to any physical quantity to be measured. The
grid layout should be chosen -carefully since the
computational cost grows with the number of grid points.
The difficulty in semiconductor device simulation is due to
the different mesh sizes between substrate and doped
regions. Finer mesh is needed in doped regions and
junctions and coarse mesh for substrate regions, to reduce
the number of unknowns and also the simulation time.
Hence wavelets with MRA concept are used to achieve
this goal. The Wavelet-Galerkin method uses the finite
difference method with grid refinement. So, instead of
letting the magnitude of wavelet coefficients to choose the
basis function in Galerkin approach, let the same
coefficients choose which grid points to choose [45].

MRA is an important concept in wavelet theory.
Many useful orthonormal wavelets are constructed within
this framework. In order to give a good explanation of the
relationship between MRA and wavelet basis, a brief
summary of Daubechies wavelets are given [46, 47]. The
usefulness of wavelets for solving partial differential
equations relies on the definition of MRA. An MRA is
based on two fundamental concepts: nested subspaces and
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orthonormal bases. The first decomposes the information
into different scales; the second allows stable and fast
algorithms. The space of square integral functions on the

real line is denoted by L*(R). The orthonormal basis of

wavelets of L*(R) is formed by dilations and translations

of a single function W (X) , called a mother wavelet.

The orthonormal basis of wavelets of L”(R) is

formed by dilations and translations of a single
function W (X) , called a mother wavelet.
Y, (x)=2"2w (@2 x-k), jk e Z. (38)

The function W (X) has a companion, the scaling function
@ (X) .They both satisfy the following two-scale relation

p(x) =) a,p(2x-k), (39)

k

P(x) =D (- ap(2x—k), (40)
k

where the coefficients 8, (K =0,1,....—1)appearing in the

two-scale relations (39) and (40) are called the wavelet
filter coefficients. The support of the scaling function ¢ is

the interval[0, L — 1] while that of the corresponding
wavelet V' is the interval [1 - L /2,L/2].

WKB-Wavelet solution for one dimensional
Schrédinger’s equation

The one dimensional Schrodinger’s equation as given
in (37) is

(41)

2 2
|:2m: 6X2 + qU (x)j|y/x = EWX
where m,” is the effective mass of an electron in the x
direction. E is the eigen energy, h is the reduced Planck’s
constant, q is the charge of an electron U(x) is the surface
potential, y(x) is the eigen wave function. The 1-D
Schrodinger equation can be solved using open boundary
conditions.

In [39] the authors have presented a WKB scheme
using the continuous finite element method. Let us assume
of the

n+1

Standard

interpolation gives inaccurate solution on a coarse grid for
a grid I;. In order to enhance the accuracy on a coarse grid,
the WKB approximation is used to construct a new
interpolation function [34].

that the nodal Values,// W, at nodes X, X

wave function w(X) are known. linear

—iS(x)

A gis 4

= 42m(E -U (x))

42m(E —U (x)) °
(42)

where A and B are constants and S(X) is a dimensionless
action.

S(x)=‘/§mj./E—U(s) ds

X,is an integration constant. Equation (42) shows the

asymptotic behavior of the wavefunction as % — 0

or E — o0 . This asymptotic has two advantages: it is a
good approximation not only at higher frequencies but also
for slowly varying potentials. The wavefunction is the sum
of two terms, each of them being the product of an
oscillatory function and a slowly varying one.

The WKB interpolated function is given by [34]

. A 1500 B, iS00
vx) </2m(E—U(x))e ’ ‘{/Zm(E—U(x))e
, Xel, (43)
In = [Xn’xnﬂ]
Vo =W (%)=

-iS(x,)

A giSt)

Bn
42m(E-U(x,)) +4,/2m(E—U(xn))e

(44)
l//n+1 = l/7(xn+1) =
A1 eiS(xM) + Bn e’is(xml)
A 2m(E_U(Xn+1)) A 2m(E_U(Xn+1))
(45)

W(X)Zan(x) fn(X)l//n +ﬂn(x) fn+1l)”n+1 ’ X € In (46)

where ¢, and f3, are the WKB-basis functions given by

i sin S (X
-2 () - S
sin y, sin y,

h

V. = @ Tl“,/E —U(s) ds

sn(x):@ JX.“,/E—U(S) ds ;
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and the amplitude factor

E-U(x
s £ (=4 229
E-U(x)
‘{/_ denotes the complex square root with non-negative
imaginary part.
For detailed expressions of finding

A,,B,,S,(X) and U (S) refer [28].

Introducing wavelets in equation (46) gives

values of

2, () £,000, + 6,00 frwo =2, ¥, 00 47
k
where dj’k is the wavelet coefficient.

B.(X) fn+1l//n+1:—an(x) f.(Xy, + Zdj,kq’j,k(x) (48)

ﬂn(x) fn+1l//n+1:
—a,() f,(0p, +>.d,, 27 p2'x-k).k € Z (49

Equation (49) can be simplified into

B ==, (0 f,(0w, + > d; ;. (X) (50)

where k=2-M, 3-M... 2-1 are 2+M-2 are unknown
coefficients. ] fixes the level of resolution. The larger the

value of |, the more accurate a solution can be obtained.
The parameter M represents that the wavelet associated

with the set of M Daubechies filter coefficients is used as
a solution bases.

Substituting the wavelet series approximation W(X) for
 (X) in equation (41) yields [48]

7 d
{2@ el (~en,(®) fn(X)wn)+Zd k@i (0 +HQUX) —E)(—,(X) fn(X)V/n)+Zd ,—,kcv,-,k(X)} =0 (51)
k k
- { 2’; (- a0 f,(0p,)+ D d; %whk(x) +(QU (X) — E)(=at, (%) T, (X)w,) +Zdj.k¢j.k<x)} =0 (2)
X k k

To determine the coefﬁcien‘[dj > we take the inner

product of both sides of equation with ;.

hZ
- o
For simplicity, we define the following notations for

integrals appearing in equation (53)

Leg
&) = [0,000,00 =T, (2" =)~ (1),
0

2m,
n=2-M3-M.,...2' -1
The equation (54) is solved using Cholesky’s
decomposition method by taking the matrix-vector form of

the equation and an accurate value of the surface potential,
U(x) is found.

Letr Letr
(=00 T, )+ Y [ #0900 +@UOO~ BNy (0 F,00w)+> 0 jcojk(x)sojn(x)} =0 (53)

L
ch= [ 1000, 0=27[12,@ -0 ,(-n)]

The equation (53) becomes

{ i (—%(x)fn(x)%)+2dj,k02n+<qU(x>—E)(wcn(x)fn(x)wn)idj,kaén}=0 (54)

absolute€rror= | U exactsoluon UWKB—WaveIet | (55)

The drain current I considering scattering effects is
given by [25, 27]
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wan ; (Vg =V )(1 —exp (— \\//dsj

T

Iy = -
L+ 1 J- dx

U; Deff /0 ° Hin Thng2 |:U (X)

J. eXp| —

T

}dydz

(56)

-H fin/2 7T|in 2

where v, =4/2K,T/zm" is the thermal velocity and is
independent of the Fermi level. D, =(K,T/Q)u,, is the

diffusion low V, , the

length / — L , the channel length. Assuming that only
the lowest side band is occupied, the effective mass is
me=m, =0.19m, which gives a thermal velocity

coefficient. For critical

v =12x10cnVs.By  Mathiessen’s  rule gy = g4 + 145
qL

m * 770,

where g, = is the ballistic mobility and

is the low field mobility, A is the mean

ga
Ho =
m * 7o,
free path, W =T, is the width of the device.

The subthreshold swing S is a measure of the gate
control on the channel. It can be expressed as

Vg
 olog | o
S = In10 o 1
B 1-2I,e™ x Sin ”(X°+a+c)x5in z(ye +b+d)
Ay Do
(57)
In which £ and o are defined as
po o
KT

=Ly /24,= Ly /27
gy =2(a+c); by =2(b+d)
/2;b=Hy;¢c=Tg/2-a; d=H, —b

2 2
1 mr nz
P\ ) b
mn ff eff
16
I =——
™ mng?

a=T

fin

X, and Yy . describe the position of the leakage path in the
fin cross section. X . could be set to zero due to symmetry,

while y is determined by the geometrical features,

concentration, and
treated as a

applied  voltages.
fitting parameter.

doping
Practically, y . is

Substituting y, = H in equation (50) becomes a

fin

lower limit of subthreshold swing.V , is set as 0.05 V,

and the lateral electric field along the channel is moderate.
Hence, the drift-diffusion is accurate to describe the
subthreshold conduction in FinFETs [21].

The electric field along the x direction is given as [6]

_U(+1D)-Ud-1 (58)
(2%”X)

where m, are the separation of the grid line along the x
direction. U (i) is the surface potential at a particular

EX

point and L is the gate length.

The transconductance is a partial derivative of drain
current with respect to the gate-source voltage keeping
drain-source voltage constant. It is a measure of device
gain.

On {\/gs (i)}‘/ds,const =

The threshold voltage (Vy,) rolloff is given by [25]

sg (L,
AV =—a 2‘321_ CX[{ ZL: ﬁj[ Vi Vo _Vds)_’vbi‘] (60)

N pEs]

L, is the drain potential decay length, V,; is the built-in

L (1 + D=1y (i—1) (59)
Ve (i+1) =V (i-1)

potential, equal to about half of the Si band gap. Equation
(60) shows that the V;, roll-off is an exponential function

L,
of = V,;, roll-off caused by DIBL is estimated by the

d
necessary gate voltage change in the most leaky path

(XC, Ye ) [23]. If the channel furthest away from the gates,
ie,X, =Ty /2,y, =0, is chosen as the most leaky path,

the sine and cosine terms will be reduced to 1.

4. Computational technique

The 3D Poisson’s equation (1) using the boundary
conditions (7-12) is solved numerically using Leibmann’s
iteration method to determine the approximate surface
potential under illumination for a fixed value of gate
voltage and assumed value of drain voltage. This value of
surface potential is given to the 3D Schrodinger equation
(22). The 3-D Schrodinger equation is then reduced to 1-D
equation using separation of variables and WKB
approximation. This 1-D Schrédinger equation (36) is
solved using WKB interpolation—-Wavelet method and the
exact value of surface potential is obtained. The drain
current can be estimated by numerically integrating the
equations (56) using Simpson’s one-third rule. The
subthreshold swing, electric field, transconductance and
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threshold voltage roll-off values are estimated using
equations (57,58,59, 60).The results obtained are validated
with commercial device simulator results.

Algorithm

1. Assign gate length, channel length, device width, height
and thickness of silicon.
2. Apply bias voltages and P, values.
3. Determine numerically the surface potential under
illumination by solving the 3D Poisson’s equation

using boundary conditions.
4. Substitute this surface potential value in the 3D
Schrodinger’s equation.
5. Reduce 3-D Schrddinger’s equation to 1-D equation
using variable-separation method

and WKB approximation.
6. Solve 1-D Schrédinger’s equation numerically using
open boundary conditions.
7. Estimate the exact value of surface potential at every
point along the channel length.
8. Obtain subthreshold swing, drain characteristics,
Mobility, electrical characteristics.

5. Results and discussion
Numerical computation has been carried out for the
nanoscale FinFET. The parameters used for the calculation

are given in Table. 1.

Table.1. Parameters and constants

Parameter Value

Gate Length (L,) 60 nm

Top gate oxide | 5 nm
thickness (Tox1)

Front (or) back gate | I nm
thickness (Tox,)

Channel Length (Leg) 60 nm
Thermal Voltage (V1) | 0.025852 V
Intrinsic carrier | 9.65 x 10%/cm’
concentration (n;)

Acceptor 1x10"% cm®
concentration (N,)

Flatband voltage (Vg | -0.48 V
Built-in potential (V) | 0.6 V

Gate voltage (V,) 0.2V

Fig.3.shows the potential profile of the FinFET
including QM effects obtained using WKB interpolation-
Wavelet method on a grid of 20 x 13 x 10 points is
compared with the reference solution obtained from
DAVINCI simulator (broken line). The surface
potentialU (X) is calculated for different values of X .The
WKB interpolation-Wavelet method shows good
agreement with the reference values and gives more
accurate values due to quantum mechanical effects. The
results are validated with DAVINCI results for Vps=1.5V
under dark condition. The surface potential values under

illuminated conditions are calculated for P(,pt:O.SW/m2 and
Vps=1.5V. It is also found that the surface potential
increases with illumination. This is due to the fact that
excess carriers generated due to illumination increases the
conductivity of the channel. Fig.4.shows the three
dimensional surface potential of nanoscale FinFET along
channel length and device width including quantum
mechanical effects for V4=0.8V. The device width is
taken to be equal to channel width (W). The S-factor,
which is a measure of the subthreshold behavior of the
device, is extracted from the I4-V,, characteristics of the
FinFET device. The S-factor for various channel lengths
and fin thickness for a constant fin height are obtained
from the device simulation and shown in Fig.5.The
calculated subthreshold swing (S) is 71.56mV/dec at V4 =
1.5V. This is due to the fact that the punch-through is
successfully interrupted by the thin body of FinFET. It is
found that the S-factor increases exponentially with
decreasing channel length. It is also found that the
subthreshold swing increases with illumination. From
Fig.6 it is observed that as the Hy, is increased from 20 to
100 nm, the saturation of S is observed [23]. The
critical H ;, needed for saturation is different for devices
with different Ty, [23]. In Fig.7,S changes more rapidly
as T, changes from 10 to 60 nm, the rate of change
increases initially and then slow down. At higthS values,
the electric field will increase at the back surface
compared to the top surface. The position of the most
leaky path is highly dependent on the channel doping, gate
bias and device geometry. For the case of undoped channel
and deep subthreshold operation, the device geometry is
the dominant variable. The closer the channel path to the
gate, the more source barrier is reduced by the gate, while
for the channel away from the gate, the more source
barrier is reduced by the source/ drain potential [23]. If the
source/drain potential penetration is the dominant factor in
determining the source barrier, the most leaky path will be
the channel path away from the gate. The source/drain
potential includes the built-in potential, V; and applied
drain bias, V [24].

20

ssseee DAVINCI-Darkconditdon ¥p,, = 0.8¥V

25 WEKB Wavdet-Dark condition-Vpg = 0.8V 4
— —— illumination-Vpg= 1.5V 4
— e WEHB Wavekt-Dark condition- ¥V, = 1 5V ,/
20 4

T5,=20.40nm

Surface Potential (V)

11}

Channe Length {nm)

Fig. 3. Three dimensional potential variation along the

channel length under dark and illuminated conditions.

Vg = 0.2V, Hg = 60nm, Tz, = 20nm, L = 60nm,

Vps=1.5V. The dotted lines show DAVINCI simulated
values at V4 = 0.8V [18].
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Fig. 4. Surface potential distribution along the channel
length and device width for Vps=0.8V, Popt=0.5W/m2.
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Fig. 5. Subthreshold swing along channel length for
various Ty, values at Hg,= 60nm and Vps=1.5V,
Popi=0.5W/m?.
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== == jllumination
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100 4
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Fig. 6. Subthreshold Swing for different Ty, values,
Ler=60nm, Vps=1.5V, Poy=0.5W/m”,

Dark condition Vs
Hg,=20,40nm Ve

— — illumination

Snbthreshold Swing oVidec)

Fin Thicness Ty, (nun)

Fig.7. Subthreshold swing for various Hg, values,
Ler=60nm, Vps=1.5V, Pou=0.5W/m’,

The simulated 1;,—V
Fig. 8 & 9. The drain current normalized by the channel
width W at the same Vgs is almost independent of H

characteristics are shown in

fin
. The small differences in the normalized

and different T

while fixing T

fin

drain current with same H come from

fin fin

the threshold voltage roll-off due to increase in T, [23].
The normalized drain current of FInFET with 10nm H ¢, is
almost twice that of FinFET with 30nmH
toH

of these two parameters can be the dominant parameter
controlling the short channel effects (SCE) of FinFET. For

a given Ly, changing the dominant parameter will lead to

[23].

fin

Depending on the relative ratio of T either one

fin fin>

big changes inV, roll-off and subthreshold swing (S)

values, while changing the nondominant parameter will
result in small changes or almost no changes. This is
because the channel is controlled by two gates on the sides
while only one gate on the top and no gate at the bottom.
In both cases, the effect of illumination increases the drain
current.

le3

led

le-5 4§

led

le-7 4§

le§ 4

leD +

Drain Current [ /W (A/pm)

le- 104

= Dark condition
= = illumination

le-114

le-12 T
0.4 -0z o0 02 04 0.6

Vg (V)

Fig. 8. 13-V characteristics of FinFET for various T,
values, Py, =0.5W/m? .
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1es ] Vps=1.5, 1, 0.5V

Drain Current, 1g /W(A/pm)

Dark condition
== illumination
le-11 T T T T T

-0.6 -4 -0.2 oo 0.2 0.4 06

le-11H

Gate Voltage, Vg (V)
Fig. 9. 13—V characteristics of FinFET for various Hgj,
values, Py, =0.5W/m?.

The I4-V4 characteristics of nanoscale FinFET are
shown in Fig.10. It shows that the subthreshold leakage
current is well suppressed even at low doping
concentration (1x10'® cm™). It is also found that there is no
kink effect, which is produced due to floating body. It is
shown that for the applied gate-to-source voltage, the drain
current also significantly increases. The channel width is
determined by applied gate-to-source voltages. The charge
carriers pass through the channel and hence the conduction
takes place. When the drain voltage is further increased,
more charge carriers try to pass through the channel,
resulting in an increase in drain current. But these charge
carriers passes through the channel width that is created
earlier. Hence the drain current saturates after a certain
limit even if the drain voltage is increased further. The
drain current under illuminated condition is higher than
dark condition due to generation of excess carriers under
illumination.

—_—

Drain Cuivent (mA)

- — —

T
0o 0.2 04 0.6 0.3 Lo 12 L4 Lé

Vas (V)

Fig. 10. Drain current characteristics of FInFET for
various Vg values. Tg,=20nm, Hg,=60nm, Pgy=0.5W/m?.

The transconductance with the applied gate-to-source
voltage, for V4=1.5V is shown in Fig.11. Due to the
applied voltage and excess carrier generation, photo

voltage is induced in the channel. This induced
photovoltage  decreases the transconductance of
photodetector under illumination along the channel.

00

2

illumination l;‘“,l =D0DS5W/m’
400 -

Darlk condition

300

G, (§/m)

200 -

100

-1.0 -0.5 o0 os 1.0 15 20

Fig. 11. Transconductance for Tg,=20nm, H;,=60nm,
Vs=1.5V, Pgp=0.5W/m?,

The distribution of electric field along the channel
length is depicted in Fig.12.The electric field along the
channel length increases due to QM effects. The electric
field increases slowly near the source end and rapidly near
the drain end. This is due to the fact that the carrier density
near the drain end experiences a rapid decrease in surface
concentration which calls for a rapid increase in the
electric field to maintain a constant drain current. It is seen
that the electric field near the drain end in the illuminated
condition is less compared to that in the dark condition. As
a result a high drain voltage is needed to attain saturation
in the illuminated condition. When the device gets
illuminated, more and more electron hole pairs are
generated and more crowded. This reduces the mobility of
the charge carriers [6].

The distribution of mobility of electrons along the
channel due to scattering effects is shown in Fig.13. It is
seen that the mobility gets reduced under illuminated
condition in comparison with the mobility under dark
condition. As more charge carriers are generated under
illuminated condition, their mobility gets affected as there
is not much free space for their movement.

————  Dark condition
——— illumination I, 0.5W/m’

2e+T -

Electric Field (V/m)

Channel Length (nm)

Fig. 12. Electric Field along channel length for
Trin=20nm, Hg;y=60nm, V=15V, Pgp=0.5W/m%
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Fg. 13. Mobility distribution along channel length.

The variation of photocurrent gain with the incident
optical power density for constant applied gate voltage and
drain voltage is shown in Fig. 14. It is seen from the figure
that the gain decreases with increase in optical power
density. This is because of the larger change in the primary
photocurrent with the change in the optical power density
as compared to the drain photocurrent.

leth

Ge+5 -

Photocuirent Gain

2e+5 -

T T T T
0.0 0.2 04 0.6 0.8 10

-
Optical Power Density (Wmn™)

Fig.14. Variation of photocurrent gain for various
optical power density

Fig. 15 & 16 shows the efficiency of the WKB-
Wavelet method by plotting the point wise relative errors
of the WOFDM & WKB-Wavelet methods with respect to
the Taurus simulated values (reference solution) for the
surface potential. The grids are chosen as (20x13x10) for
both the WOFDM & WKB-Wavelet methods.

Relative error-WOFDM method

Relative error for surface potential

0 10 20 30 40 &0 60 70
Channel Length (nm)

Fig. 15. Relative error of the WOFDM method
(20x13x10 points) with the reference solution (Taurus)
for the surface potential.

Relative error-WKB Wavelet method

Relative error for surface potential
Q
-]
o

o 10 20 30 40 50 60 70
Channel Length (nm)

Fig. 16. Relative error of the WKB-Wavelet method
(20x13x10 points) with the reference solution (Taurus)
for the surface potential.

Numerical efficiency

Table.2 shows that different mesh grid points are used
in the transport direction for the resolution of Poisson-
Schrodinger equation in order to compute accurate
solution. For a 20x13x10 mesh the WOFDM method is
nearly 10 times more accurate than the FDM method with
considerable reduction in simulation time. The Poisson-
Schrodinger equations are solved on the coarser grid (15
grid points). Then the results for the finer grids are
interpolated from the coarse ones. This multi-grid
procedure enables to use the advantages of WKB
approximation and Wavelet for obtaining better solution of
the coupled Poisson-Schrodinger equation with reduction
in simulation time. The relative error for surface potential
is computed with reference to the Taurus simulator values.
The simulation time is the total simulation time. The
simulation is done using Matlab version 7.0.1 with a
personal computer using Intel Dual Core Processor. It is
found that the simulation time and the relative error
reduces considerably with the WKB-Wavelet method.
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Table.2. Comparisons of the simulation times & mean relative errors of FDM & WKB-Wavelet for different meshes

No. of grid points in

Simulation time

Mean rel. error

Simulation time

Mean rel. error

X,Y,Z WKB-Wavelet WKB-Wavelet FDM FDM
20x13 x10 102s 0.0223 116 s 0.2158
45 x 32 x 23 642 s 0.0165 712's 0.1635
60 x 49 x 34 1568 s 0.0083 1824 s 0.0674

Table.3. Comparison of the simulation times & means relative errors of WOFDM & WKB-Wavelet for different meshes

No. of grid points

Simulation Time

Mean rel. error

Simulation Time

Mean rel. error

X,y,Z WKB-Wavelet WKB-Wavelet WOFDM WOFDM
20x 13 x 10 102's 0.0223 96 s 0.1364
45 x 32 x 23 642 s 0.0165 543 s 0.0436
60 x 49 x 34 1568 s 0.0083 1367 s 0.0243

Table 3 gives the corresponding simulation times and
mean relative errors of WOFDM method and WKB-
Wavelet method based on the number of grid points in X,
y, z directions. We observe that for obtaining
approximately the same precision, the simulation time is
reduced significantly with the WKB-Wavelet method
compared to WOFDM method. An extensive comparison
of the surface potential values of nanoscale FinFET using
WKB-Wavelet method shows that it approximates more
accurately with less number of grid points than the FDM
and WOFDM methods. Hence the simulation time is
reduced considerably.

6. Conclusions

The WKB-Wavelet method for modeling nanoscale
FinFET photodetector including quantum mechanical
effects (QME) shows that the FinFET may retain
performance acceptable for OEIC receiver applications
even if the gate length is reduced to nanoscale with
reduced computation time. It also shows the efficiency of
the WKB-Wavelet method as compared to WOFDM and
FDM methods. Accurate results have been obtained with
significantly reduced computational time.
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